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Abstract. We develop the path integral theory for master equations of general Lindblad form
(positive semigroups), describing Markovian open quantum systems. First the Hamiltonian
path integral expression for the propagator is derived, which exhibits nicely the decoherence
of pairs of phase space histories. A very appealing picture arises in the semiclassical limit
where the degree of decoherence is expressible in terms of a phase space decoherence distance
functional. For the important class of (effective) Hamiltonians quadratic in the momenta, we
derive the Lagrangian version of the path integral propagator. We then evaluate the path integral
approximately in a stationary phase approximation, leading to a Van Vleck-type propagator valid
under semiclassical(h̄→ 0) conditions. We also derive the propagator for the soluble damped
harmonic oscillator in closed form from path integrals. Finally, connections to the active field
of stochastic pure-state descriptions of open quantum systems are established, here in particular
to linear quantum state diffusion.

1. Introduction

The use of path integrals to describe open quantum systems was initiated by Feynman
and Vernon [1, 2], more recent developments can be found in Caldeira and Leggett [3],
Grabert [4] or Weiss [5]. This approach describes open quantum systems with the help
of an explicit model of the environment. The time evolution of the closed total system is
governed by ordinary unitary Schrödinger dynamics, tracing over the environmental degrees
of freedom leads to an effective propagator for the reduced density operator alone. Path
integrals are a convenient tool in this approach, since the trace over the environment can
be taken analytically due to the assumed environment of harmonic oscillators and the linear
system–environment coupling.

In general, open system dynamics is non-Markovian, since the environment has a certain
finite memory time. A Markovian approximation, however, is valid for many interesting
systems, particularly in quantum optics. The time evolution of the reduced density operator
is then given by an ordinary first-order evolution equation

ρ̇t = Lρt (1)

with a linear superoperatorL.
Instead of explicitly describing the environment, the time evolution of Markovian open

quantum systems can be determined by an axiomatic approach. It has been shown by
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Lindblad [6] that the most general Markovian master equation (1) that governs the time
evolution of a density operator (positive semigroup) must be of the following form

ρ̇t = − i

h̄
[Ĥ , ρt ] + 1

2h̄

∑
µ

([L̂µρt , L̂
†
µ] + [L̂µ, ρt L̂

†
µ]). (2)

Here,Ĥ is the (Hermitian) Hamiltonian of the system, while the (arbitrary)environment
operators L̂µ model the effects of the environment on the system. The choice of the
environment operatorŝLµ replaces the assumptions about the microscopic interaction term
of the total Hamiltonian in environment models.

This particular form of the master equation is required in order to preserve normalization
and positivity of the density operatorρ. Notice that we introduced an explicit factor ¯h−1

in front of the environmental terms for convenience. In many applications, environment
operators are annihilation operator-like, in which case this prefactor occurs naturally.

Markovian master equations are widely used in the quantum optics literature [7, 8] and
solid states or chemical physics [3, 5]. Owing to various approximations in their derivation
from environment models, however, the derived master equations are sometimesnot of the
physically required Lindblad form (2) [9–11]. To avoid these problems, it seems natural
to basethe path integral description of Markovian open quantum systems on the master
equation (2) to ensure physically meaningful results.

The aim of this paper, therefore, is complementary to the previous use of path integrals
for the description of open quantum systems. We start from the most general sensible
master equation and derive the corresponding path integral expressions for the propagator.
The benefit of path integral expressions for the solution of master equations is similar to
the case for unitary quantum mechanics, where they serve as the starting point for efficient
perturbation expansions or semiclassical methods. For relativistic generalizations, path
integrals seem indispensable. This paper provides the basis for a path integral treatment of
the master equation (2).

In detail, the paper is organized as follows: in section 2 we determine the propagator in
the form of a Hamiltonian path integral. The result can be expressed in terms of a Feynman–
Vernon-type phase space influence functional under the double path integral. In this form, the
decoherent effects of the environmental terms in the Lindblad master equation (2) become
very transparent, particularly in the semiclassical(h̄ → 0) limit, as shown in section 3.
The decoherence of pairs of phase space histories [α] can be measured by adecoherence
distance functionalD[α, α′] .

Since Lagrangian path integrals are more common, we evaluate the momentum part of
the phase space path integral for effective Hamiltonians at most quadratic in the momenta,
and derive the configuration space path integral propagator in section 4. Again, we express
the result in terms of a (configuration space) influence functional and also introduce the
corresponding decoherence distance functionalD[q, q′] between paths [q].

As a first benefit of a path integral expression we determine the propagator in the
semiclassical(h̄ → 0) limit in section 5. This procedure is similar to the derivation of
the Van Vleck semiclassical propagator from path integrals in ordinary quantum mechanics
[12]. In section 6 we evaluate the path integral in closed form for the soluble model of an
harmonic oscillator with linear environment operators.

Recently, stochastic pure-state descriptions of open quantum systems have become an
active field of research [13–18]. The master equation (2) for the density operator is replaced
by stochastic Schrödinger equations governing the time evolution of individual state vectors.
Taking the ensemble mean over these pure-state projectors recovers the results of the master
equation. We mention the relevance of these new concepts to this paper in section 7,
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particularly pointing out the connection to the stochastic path integral propagator of linear
quantum state diffusion [16–18]. We close with a summary and conclusions in the final
section 8.

2. Hamiltonian path integral propagator

In this section we derive the general phase space path integral expression for the propagator
J of the Lindblad master equation (2) which we write in the form

ρ̇ = i

h̄

(
− Ĥeffρ + ρĤ †eff − i

∑
µ

L̂µρL̂
†
µ

)
. (3)

with the effective, non-Hermitian Hamiltonian

Ĥeff = Ĥ − i

2

∑
µ

L̂†µL̂µ. (4)

We first propagate a small timestep1t to get

〈q|ρ(t +1t)|q′〉 =
∫

dq0

∫
dq′0〈q0|ρ(t)|q′0〉

(
〈q|q0〉〈q′0|q′〉 +

1t

h̄

{
− i〈q|Ĥeff|q0〉〈q′0|q′〉

+ i〈q|q0〉〈q′0|Ĥ †eff|q′〉 +
∑
µ

〈q|L̂µ|q0〉〈q′0|L̂†µq′〉
})
. (5)

Introducing the Wigner transform

O(q,p) = 2d(2πh̄)(d/2)
∫

dq′〈q − q′|Ô|q + q′〉〈q′|2p〉 (6)

of operatorsÔ, we can replace the matrix elements〈q|Ô|q′〉 appearing in (5) with the help
of the identity

〈q|Ô|q′〉 = (2πh̄)−(d/2)
∫

dpO

(
q + q′

2
,p

)
〈q − q′|p〉. (7)

The plane waves in (6) and (7) are〈q|p〉 = (2πh̄)−(d/2) exp{iq · p/h̄}.
With (7), we find

〈q|ρ(t +1t)|q′〉 = (2πh̄)−2d
∫

dq0

∫
dq′0

∫
dp
∫

dp′〈q0|ρ(t)|q′0〉

× exp
i

h̄

{(
p(q − q0)−Heff

(
q + q0

2
,p

)
1t

)
−
(
p′(q′ − q′0)−H ∗eff

(
q′ + q′0

2
,p′
)
1t

)
−i
∑
µ

Lµ

(
q + q0

2
,p

)
L∗µ

(
q′ + q′0

2
,p′
)
1t

}
(8)

valid up to first order in1t .
In order to determineρ(t) from ρ(t = 0) for a finite timet , we divide the time interval

in N small timesteps1t = t/N , and establish iteratively the relation between the final and
initial density operator fromN short-time propagators (8), to get

〈q|ρ(t)|q′〉 =
∫

dq0

∫
dq′0J (q, q′, t; q0, q

′
0, 0)〈q0|ρ(t = 0)|q′0〉 (9)
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with the propagator

J (q, q′, t; q0, q
′
0, 0) = lim

N→∞
(2πh̄)−2Nd

∫
dp1

∫
dq1 . . .

∫
dqN−1

∫
dpN

∫
dp′1

×
∫

dq′1 . . .
∫

dq′N−1

∫
dp′N exp

i

h̄

N∑
k=1

1t

{
(pkq̇k −Heff(q̄k,pk))

−(p′kq̇′k −H ∗eff(q̄
′
k,p
′
k))− i

∑
µ

Lµ(q̄k,pk)L
∗
µ(q̄
′
k,p
′
k)

}
(10)

whereqN = q andq′N = q′. We introduced the midpoints and velocities

q̄k = qk + qk−1

2
and q̇k = qk − qk−1

1t
(11)

determining how to evaluate the action integral in (10). This midpoint rule is a result of the
use of the Wigner transform (6) as phase space functions representing the corresponding
operators.

We express our main result (10) more formally as a double path integral over phase
space paths [α] = [q,p],

J (q, q′, t; q0, q
′
0, 0) =

∫ (q,t)

(q0,0)
D[α]

∫ (q′,t)

(q′0,0)
D[α′] exp

{
i

h̄
S[α;α′]

}
(12)

with the generalized double phase space action functional

S[α;α′] = S[q,p; q′,p′] =
∫ t

0
dτ {q̇τpτ −Heff(qτ ,pτ )} −

∫ t

0
dτ {q̇′τp′τ −H ∗eff(q

′
τ ,p
′
τ )}

−i
∑
µ

∫ t

0
dτ {Lµ(qτ ,pτ )L∗µ(q′τ ,p′τ )}. (13)

3. Hamiltonian decoherence distance functional

Expression (12) for the propagator with action functional (13) becomes more transparent
if we separate the contributions originating from the true HamiltonianH(q,p) from those
of the environment functionsLµ(q,p). We denote the Wigner transform of̂L†µL̂µ by
|3µ(q,p)|2 which implies

Heff(q,p) = H(q,p)− i

2

∑
µ

|3µ(q,p)|2. (14)

The propagator is most conveniently written in terms of aphase space influence functional
F [α,α′] of pairs of phase space histories [α],

J (q, q′, t; q0, q
′
0, 0) =

∫ (q,t)

(q0,0)
D[α]

∫ (q′,t)

(q′0,0)
D[α′] exp

{
i

h̄
{Scl[α] − Scl[α

′]}
}
F [α,α′] (15)

with the classical Hamiltonian action functional of the isolated system given by

Scl[α] =
∫ t

0
dτ {q̇τpτ −H(qτ ,pτ )}. (16)
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With (14) we find

F [α,α′] = exp

{
− 1

2h̄

∑
µ

∫ t

0
dτ [|3µ(qτ ,pτ )|2+ |3µ(q

′
τ ,p
′
τ )|2

−2 Re{Lµ(qτ ,pτ )L∗µ(q′τ ,p′τ )}]
}

exp

{
i

h̄
8[α,α′]

}
(17)

with a phase functional

8[α,α′] =
∑
µ

∫ t

0
dτ Im{Lµ(qτ ,pτ )L∗µ(q′τ ,p′τ )}. (18)

Expressing the Wigner transform ofL̂†µL̂µ (which we denote by|3µ(q,p)|2) in terms of

the Wigner transform of̂Lµ (which was denoted byLµ(q,p)), we find a more transparent
expression for the influence functional. Including only lowest orders in ¯h we find

|3µ(q,p)|2 = |Lµ(q,p)|2+ ih̄{Lµ(q,p), L∗µ(q,p)} +O(h̄2) (19)

where{·, ·} denotes the classical Poisson bracket.
Thus, neglecting higher-order terms in ¯h, the influence functional (17) takes the

appealing form

F [α,α′] = exp− 1

2h̄

{∑
µ

∫ t

0
dτ |Lµ(qτ ,pτ )− Lµ(q′τ ,p′τ )|2+O(h̄)

}
exp

{
i

h̄
8[α,α′]

}
.

(20)

While the factor involving8[α,α′] is an additional phase contributing to the classical
actions, the first factor is manifestly responsible for the decoherence among phase space
histories. Notice that the neglectedO(h̄) and higher-order terms in (20) are mere constants
for the important classes of linear or quadratic-Hermitian environment operatorsL̂µ.
Therefore, the form (20) for the influence functional holds in these cases exactly.

We introduce adecoherence distance functionalD[α,α′] in the space of phase space
histories through

D[α,α′] =
(∑

µ

∫ t

0
dτ |Lµ(qτ ,pτ )− Lµ(q′τ ,p′τ )|2

)1/2

. (21)

In general, in a strict mathematical sense,D[.,.] is a pseudo-metric[19] only since the
distance (21) between different histories may become zero. In terms of the decoherence
distance, the propagatorJ for the master equation (2) is given by

J (q, q′, t; q0, q
′
0, 0) =

∫ (q,t)

(q0,0)
D[α]

∫ (q′,t)

(q′0,0)
D[α′] exp

{
i

h̄
{Scl[α] − Scl[α

′] +8[α,α′]}
}

× exp

{
− 1

2h̄

(
D[α,α′]2+O(h̄))} . (22)

This form exhibits nicely the meaning of the environment operators in the master equation.
They lead to an additional phase8[α,α′] modifying the classical actions, and more
importantly, they determine the distance functional (21) in the space of phase space histories.
According to expression (22) this distance measures their decoherence.

We have seen how a phase space path integral approach to the master equation (2) leads
to a transparent picture of dynamics and decoherence. The use of Lagrangian path integrals
is very common, however, which we investigate in the next section.
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4. Lagrangian path integral propagator

Here we restrict ourselves to a one degree of freedom system to keep the expressions simple.
In order to determine the Lagrangian version of the propagator, we have to evaluate the

momentum path integrals in (12). This is analytically possible for Hamiltonians quadratic
in the momenta,

Ĥ = p̂2

2m
+ V (q̂) (23)

and momentum-linear environment operators. For simplicity, we also assume their linear
dependence on the position,

L̂µ = βµq̂ + γµp̂ (24)

although this restriction is not necessary. All the results can be expressed in terms of four
real parameters|β|2, ω̄, 0, |γ |2 defined through

|β|2 =
∑
µ

|βµ|2 ω̄ − i0 =
∑
µ

βµγ
∗
µ and |γ |2 =

∑
µ

|γµ|2. (25)

The parameter0 is the frictional damping rate. A set of linear environment operators like
(24) therefore describesdissipationfor 0 > 0 only.

The Wigner transform of the effective Hamiltonian (4) with (23) and (24) is

Heff(q, p) = p2

2m
+ V (q)− i

2

{|γ |2p2+ 2ω̄pq + |β|2q2
}+ ih̄

2
0. (26)

The Gaussian momentum integrals in (10) can now be evaluated. We find

J (q, q ′, t; q0, q
′
0, 0) = lim

N→∞

(
m

2πh̄1t

)N ∫
dq1 . . .

∫
dqN−1

∫
dq ′1 . . .

∫
dq ′N−1

× exp
i

h̄

N∑
k=1

1t

{(
m

2
q̇2
k − V (q̄k)

)
−
(
m

2
(q̇ ′k)

2− V (q̄ ′k)
)

+m0(q̇kq̄ ′k − q̄kq̇ ′k)−
m02

2
(q̄2
k − (q̄ ′k)2)

}
× exp− 1

2h̄

N∑
k=1

1t{(|β|2+m2|γ |202− 2mω̄0)(q̄k − q̄ ′k)2

+2m(ω̄ −m|γ |20)(q̄k − q̄ ′k)(q̇k − q̇ ′k)+m2|γ |2(q̇k − q̇ ′k)2} exp(0t) (27)

whereqN = q, q ′N = q ′. Again we use the notation (11) for midpoints and velocities.
We write the resulting Lagrangian path integral propagator in a similar form to that of

the phase space version (15) by introducing theLagrangian influence functionalF [q, q ′],

J (q, q ′, t; q0, q
′
0, 0) =

∫ (q,t)

(q0,0)
D[q]

∫ (q ′,t)

(q ′0,0)
D[q ′] exp

{
i

h̄
(Scl[q] − Scl[q

′])
}
F [q, q ′]. (28)

The classical action of the isolated system is expressed in its Lagrangian version

Scl[q] =
∫ t

0
dτ

{
1

2
mq̇2

τ − V (qτ )
}
. (29)

As in the phase space description the Lagrangian influence functionalF [q, q ′] consists of
a phase and a decohering amplitude,

F [q, q ′] = exp(0t) exp

{
− 1

2h̄
D[q, q ′]2

}
exp

{
i

h̄
8[q, q ′]

}
(30)
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with the phase given by

8[q, q ′] = m0
∫ t

0
dτ(q̇τ q

′
τ − qτ q̇ ′τ )−

1

2
m02

∫ t

0
(q2
τ − q ′2τ ) (31)

and theLagrangian decoherence distanceD[q, q ′] turns out to be

D[q, q ′] =
(∑

µ

∫ t

0
|(βµ −m0γµ)(qτ − q ′τ )+mγµ(q̇τ − q̇ ′τ )|2

)1/2

. (32)

The interpretation of the configuration space path integral propagator (28) with influence
functional (30) is similar to that of the corresponding phase space expression (22). Again we
see how contributions of configuration space paths [qτ ] with a large distance according to
the metric (32) decohere. These Lagrangian results are restricted to Hamiltonians quadratic
and environment operators linear in the momenta. The corresponding phase space results
are valid in general.

In terms of the parameters (25) we find

D[q, q ′]2 = (|β|2+m2|γ |202− 2mω̄0)
∫ t

0
dτ(qτ − q ′τ )2

+2m(ω̄ −m|γ |20)
∫ t

0
dτ(qτ − q ′τ )(q̇τ − q̇ ′τ )

+m2|γ |2
∫ t

0
dτ(q̇τ − q̇ ′τ )2. (33)

A particularly simple form of the influence functional arises fromω̄ = 0 = 0, resulting for
instance from two environment operators

L̂1 = Bq̂ and L̂2 = C

m
p̂ (34)

with some constantsB andC. From (30), (31) and (33) we find

F [q, q ′] = exp

{
− 1

2h̄

(
|B|2

∫ t

0
dτ(qτ − q ′τ )2+ |C|2

∫ t

0
dτ(q̇τ − q̇ ′τ )2

)}
. (35)

Keep in mind, however, that the case0 = 0 does not describe dissipation, the
decoherence in this case arises only from fluctuations.

Similar expressions for the influence functional are well known in the context of
environment models like those of Feynman and Vernon in a Markovian limit (see for
instance [3]).

5. Semiclassical propagator

As in ordinary quantum mechanics, the path integral propagator can be evaluated in the
semiclassical(h̄ → 0) limit with the help of a stationary phase evaluation of the path
integral [12].

The stationary paths are determined from the generalized action (13), the variational
principle

δS[q,p; q′,p′] = 0 (36)
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leads to the (complex) equations of motion

q̇ = ∂Heff(q,p)

∂p
+ i

∑
µ

∂Lµ(q,p)

∂p
L∗µ(q

′,p′)

ṗ = −∂Heff(q,p)

∂q
− i

∑
µ

∂Lµ(q,p)

∂q
L∗µ(q

′,p′)

q̇′ = ∂H ∗eff(q
′,p′)

∂p′
− i

∑
µ

Lµ(q,p)
∂L∗µ(q

′,p′)
∂p′

ṗ′ = −∂H
∗
eff(q

′,p′)
∂q′

+ i
∑
µ

Lµ(q,p)
∂L∗µ(q

′,p′)
∂q′

(37)

which have to be solved with the boundary conditions

q(0) = q0 q′(0) = q′0 q(t) = q and q′(t) = q′. (38)

As for the stationary phase approximation, we can use the semiclassical expression

Heff(q,p) ≈ H(q,p)− i

2

∑
µ

|Lµ(q,p)|2 (39)

for the effective Hamiltonian in (37), according to (14) and (19).
In generalizing the usual semiclassical theory [12], the propagator is given by the

expression

J (q, q′, t; q0, q
′
0, 0) = (2π ih̄)−d det

 ∂2S
∂q∂q0

∂2S
∂q′∂q0

∂2S
∂q∂q′0

∂2S
∂q′∂q′0

1/2

× exp

{
i

h̄
Scl(q, q

′, t; q0, q
′
0, 0)

}
(40)

the generalized actionScl (13) being evaluated along the solution of the classical
equations (37).

Expression (40) together with the equations of motion (37) represents the semiclassical
(h̄ → 0) approximation of the propagator for the Lindblad master equation for general
Hamiltonian and environment functions and serves as the starting point for a semiclassical
theory of open quantum systems. Similar ideas were developed in [20], starting from the
Feynman–Vernon description of the environment.

From a purely classical point of view it is remarkable thatdissipative dynamicsis derived
from a variational principle (36). It is clear from (37) that this involves complex equations
of motion, giving a ‘quantum foundation’ to attempts at describing classical dissipation from
complex Hamiltonian dynamics (see for instance Dekker [21]).

6. Propagator for the harmonic oscillator with linear environment operators

The path integral propagator (12) can be evaluated in closed form for an harmonic oscillator

Ĥ = p̂2

2m
+ 1

2
mω2q̂2 (41)

with linear environment operators

L̂µ = βµq̂ + γµp̂ (42)
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since for at most quadratic dependence of the (effective) Hamiltonian on position and
momenta, the path integrals are Gaussian. Under these circumstances the semiclassical
propagator (40) is exact and can be evaluated analytically. With the notations (25), equations
(37) reduce to the linear equation
q̇

ṗ

q̇ ′

ṗ′

 =


−iω̄ (1/m)− i|γ |2 iω̄ − 0 i|γ |2
−mω2+ i|β|2 iω̄ −i|β|2 −iω̄ − 0
−iω̄ − 0 −i|γ |2 iω̄ (1/m)+ i|γ |2

i|β|2 iω̄ − 0 −mω2− i|β|2 −iω̄



q

p

q ′

p′

 (43)

which has to be solved with the boundary conditions (38). We find that the action (13)
evaluated along the solution of the classical equations (43) is given by

Scl(q, q
′, t; q0, q

′
0, 0) = SR+ i[SI − h̄0t ] (44)

where the position independent term−ih̄0t arises from the constant term of the effective
Hamiltonian (26). The position dependent real and imaginary parts of the action are

SR = mω

2 sinωt
{cosωt [q2

0 − (q ′0)2+ q2− (q ′)2] − 2 cosh0t [q0q − q ′0q ′]
−2 sinh0t [q0q

′ − q ′0q]} (45)

and

SI = m

80(ω2+ 02) sin2ωt
{A(t)(q0− q ′0)2− 4B(t)(q0− q ′0)(q − q ′)− A(−t)(q − q ′)2}

(46)

where the functionsA(t) andB(t) are best expressed with the parameters

a = ω2(mω2|γ |2+ 2m02|γ |2− 2ω̄0 + |β|2/m)
b = 0ω(2ω̄0 +mω2|γ |2− |β|2/m)
c = 2ω̄ω2−mω20|γ |2+ 0|β|2/m
d = (ω2+ 02)(mω2|γ |2+ |β|2/m). (47)

We find

A(t) = a e20t + b sin 2ωt + c cos 2ωt − d
B(t) = a cosωt sinh0t + b sinωt cosh0t. (48)

The final expression for the propagator is therefore

J (q, q ′, t; q0, q
′
0, 0) = mω

2πh̄| sinωt | exp(0t) exp

(
iSR

h̄

)
exp

(
−SI

h̄

)
(49)

with SR andSI from (45) and (46). The prefactor has been determined from the second-order
derivatives of the action with respect to initial and final positions according to (40).

Notice that of all the parameters only the oscillator frequencyω and damping rate0 are
directly relevant to the time dependence. The dissipationless (0 = 0) limit is non-trivial,
the relevant dynamical parameters becomeω and the combination [mω2|γ |2+ |β|2/m].

Another simple observation is that the first term of the imaginary part (46) of the action
together with the prefactor in (49) asymptotically (0t →∞) represents a delta function,

mω exp(0t)

2πh̄| sinωt | exp

{
− mA(t)

8h̄0(ω2+ 02) sin2ωt
(q0− q ′0)2

}
→
√

2mω20(ω2+ 02)

aπh̄
δ(q0− q ′0)

(50)
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which implies that the asymptotic density matrix is independent of the initial condition.
SinceA(t) ≈ a exp(20t) for 0t � 1, the delta function is approached exponentially fast.

More interesting conclusions can be drawn from the general expression (49), which
simplifies considerably for special cases like the damped free particle (ω = 0), no dissipation
(0 = 0) etc. We do not want to investigate the damped harmonic oscillator any further,
however, and return to the general master equation (2).

7. Stochastic path integral propagators

Recently, much effort has been devoted tounravel the master equation (2) with the help of
stochastic Schrödinger equations [13–15]. The density operator is regained by the ensemble
averageM[. . .] over stochastic pure state projectors,

ρ(t) =M[|ψξ(t)〉〈ψξ(t)|] (51)

the subscriptξ for state vectors indicating the dependence on stochastic processesξ(t).
In quantum measurement theories these processes are identified with an actually measured
signal. The stochastic states|ψξ(t)〉 model the random behaviour of individual quantum
systems, their time evolution is governed by a stochastic propagatorGξ(t; 0),

|ψξ(t)〉 = Gξ(t; 0)|ψ(0)〉. (52)

With these propagators, property (51) translates into astochastic decouplingof the density
operator propagator into the product of stochastic pure state propagators,

J (q, q′, t; q0, q
′
0, 0) =M[Gξ(q, t; q0, 0)G∗ξ (q

′, t; q′0, 0)]. (53)

This form of stochastic decoupling must hold for any linearunravellingof density operator
dynamics. Path integrals are very convenient tools to find such representations, since path
integration and ensemble mean can be interchanged, leading to ordinary stochastic calculus
under the path integrals. Even in non-Markovian cases can such a stochastic decoupling
of the path integral propagator for the density operator be used to construct stochastic pure
state propagators [22, 23].

It is instructive to follow this procedure in the case of the Lindblad master equation (2)
with propagator (12). We use independent complex Wiener processesξµ(t) with properties

M[ξµ(t)] = 0 M[ξµ(t)ξν(t
′)] = 0 and M[ξµ(t)ξ

∗
ν (t
′)] = δµνδ(t − t ′). (54)

The decoupling potential of these processes is based on the formula

M
[

exp

{∑
µ

∫ t

0
[dξµ(τ )fµ(τ)+ dξ ∗µ(τ)gµ(τ)]

}]
= exp

{∑
µ

∫ t

0
dτ fµ(τ)gµ(τ)

}
(55)

with arbitrary functionsfµ(t), gµ(t) under the It̂o-stochastic integrals on the left-hand side.
The choice

fµ(t) = Lµ(qt ,pt ) and gµ(t) = L∗µ(q′t ,p′t ) (56)

leads to a decoupling of the propagator (12) of the Lindblad master equation with the
stochastic phase space path integral propagator

Gξ(q, t; q0, 0) =
∫ (q,t)

(q0,0)
D[α] exp

i

h̄
Sξ [α]. (57)

The complex It̂o-stochastic phase space action integral is given by

Sξ [α] =
∫ t

0
dτ [q̇τpτ −Heff(qτ ,pτ )] − i

∑
µ

∫ t

0
dξµ(τ )Lµ(qτ ,pτ ). (58)
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This is the propagator of thelinear quantum state diffusion(LQSD) Itô-stochastic
Schr̈odinger equation

|dψ〉 = − i

h̄
Ĥ |ψ〉 dt − 1

2

∑
µ

L̂†µL̂µ|ψ〉 dt +
∑
µ

L̂µ|ψ〉 dξµ (59)

which is easily shown directly to lead to the Lindblad master equation (2) in the mean.
The stochastic LQSD propagator (57) was investigated in detail in [18], see also [16] and
related investigations in [17].

For completeness only we mention that for numerical purposes the nonlinearquantum
state diffusion(QSD) equation [13–15]

|dψ〉 = − i

h̄
Ĥ |ψ〉 dt − 1

2

∑
µ

(L̂†µL̂µ − 2l∗µL̂µ + |lµ|2)|ψ〉 dt +
∑
µ

(L̂µ − lµ)|ψ〉 dξµ (60)

is superior to LQSD (59) since individual realizations are normalized, while still recovering
the results of the master equation (2) in the mean. QSD differs from LQSD through
additional terms involving the expectation valueslµ = 〈ψ |Lµ|ψ〉, leading to a nonlinear
stochastic Schrödinger equation.

8. Summary and conclusions

In this paper we have derived the general path integral expressions for the propagator of the
most sensible Markovian master equation (2). The Hamiltonian version is valid in general,
whereas for the Lagrangian version we have to restrict ourselves to standard Hamiltonian
and momentum-linear environment operators.

We express both versions in terms of influence functionals, whose amplitude we were
able to express with the help of decoherence distance functionals. These expressions
demonstrate quantitatively how the environment operators in the master equation suppress
the coherence of contributing pairs of paths under the double path integrals.

In semiclassical conditions, the propagator can be evaluated in a stationary phase
approximation. We derive the relevant (complex) classical equations of motion and the
final expression for the semiclassical propagator. We believe that this approach offers a
useful numerical tool to solve the master equation for near-classical situations directly, a
method which is complementary to Monte Carlo simulation techniques involving classical
Langevin equations.

Because the semiclassical propagator is exact for at most quadratic (effective)
Hamiltonians, we can use our result to determine the propagator analytically for the harmonic
oscillator with general linear environment operators from path integrals.

Finally, we establish the connection to stochastic pure-state descriptions of open
quantum systems, which becomes particularly transparent when using path integrals. These
results have only recently been generalized to non-Markovian situations, which leaves room
for further investigations.
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